Register for an account


Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.


Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

The Sciences

Distant full Moon tonight

Bad AstronomyBy Phil PlaitOctober 12, 2011 3:18 AM


Sign up for our email newsletter for the latest science news

I almost missed this, but an email from astrophotographer Anthony Ayiomamitis (whose photo I feature below) reminded me: tonight's full Moon occurs at apogee, the point in the Moon's orbit where it is most distant from Earth. I actually wrote quite a bit about this last year, so I'll repost the article below. Full Moon occurs officially tonight at 02:06 UTC (10:06 p.m. Eastern US time), so in a couple of hours as I write this. Apogee occurs about 9 hours later (October 12 at 11:44 UTC), when the Moon will be 406,176 km (252,286 miles) from the Earth. It was at perigee on September 28, when it was a mere 357,555 km (222,174 miles) from us... but make sure you read the footnote below! And I'll note: the difference in size between the Moon at closest and farthest approach isn't something you'd probably never notice it by eye, especially since you can't compare the two at the same time. The change is gradual, and the Moon is actually pretty small in the sky. But it's still neat when you take a picture and compare them...

I've been posting a lot of extreme close-ups of the Moon, but sometimes you can learn something by taking a step back. For example, I imagine if I went out in the street and asked people what shape the Moon's orbit was, they'd say it was a circle (or, given recent poll results, they'd say it was Muslim

). In fact, however, the Moon's orbit is decidedly elliptical. When it's closest to Earth -- the point called perigee -- it's roughly 360,000 kilometers (223,000 miles) away*

, and when it's at its farthest point -- apogee -- it's at a distance of about 405,000 km (251,000 miles). That's a difference of about 10% -- not enough to tell by eye, but certainly enough to see in a picture... like this one

, by the Greek amateur astronomer Anthony Ayiomamitis:


[Click to emperigeenate.] Amazing, isn't it? The Moon is noticeably different! He took those images at full Moon, but seven months apart, when the Moon was at perigee (last January) and apogee (just a few days ago as I write this). It's part of a project he does every year, and it's pretty cool. He was able to get these images within a few moments of the exact times of apogee and perigee. You might wonder how the Moon can be at apogee when it's full one time, and perigee at another time it's full. That's a good question, and it's because the phase of the Moon doesn't depend on the shape of its orbit, it depends on the angle between the Sun, the Moon, and the Earth

. If the Sun is behind the Moon from our viewpoint, we see only the dark side, and the Moon is new. If the Sun is behind us, and shining straight down on the Moon, we see it as full. The crescent and gibbous phases happen in between those times. So while the Moon's phase depends on where it is in its orbit relative to the Sun and Earth, the orbit shape -- the fact that it's a bit of an ellipse and not a circle -- isn't all that important. Not only that, the time it takes to go from full Moon to full Moon (called the synodic month

) is not the same amount of time it takes to go from perigee, around the Earth, and back to perigee (called the anomalistic month

). The first is about 29.5 days, the second about 27.6 days. That difference means that every time the Moon gets to perigee, it takes an extra 2.2 days or so for the phase to catch up. Or, a better way to think about it is like this: say at some date the Moon is both full and at perigee. 29.5 days later, it's full again, but it's had an extra 2.2 days around the Earth. It's a little bit past perigee when it's full (or you could say it hit perigee before it was full again). Wait until the next full Moon and now it's 4.4 days past perigee (or, it was at perigee again 4.4 days before it was full a third time). Keep doing that; after about 6 cycles of its phases, that extra time will add up to about half of the anomalistic cycle. In other words, full Moon will happen at apogee! It's not an exact match, so you don't really get a perfect full Moon at perigee and another at apogee in one year. But as Anthony showed, you can get pretty close. And if you're wondering why you've never noticed the 10% difference in Moon size, it's because when you look at it, you're not comparing it side-by-side with itself like in the picture. You don't have a good gauge of exactly how big it is from month to month, so you never notice. You need to photograph it, or observe it very carefully through a telescope. I'll note that the Earth's orbit around the Sun is also an ellipse, so the Sun appears bigger and smaller throughout the year; the change isn't as big as for the Moon, but you can see for yourself because Anthony has images of that as well

. And if you're curious about on what dates the Moon reaches perigee and apogee, head over to Fourmilab's Perigee and Apogee calculator

. Amazing, isn't it, that something that seems this obvious can be hidden in plain view. It makes you wonder what else you're missing, doesn't it?

^* That distance is measured between the center of the Earth and the center of the Moon. Subtract the radii of each [(1737 + 6360) ≈ 8100 km (5020 miles)] to get the rough distance between the surfaces of the two objects.

2 Free Articles Left

Want it all? Get unlimited access when you subscribe.


Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%


Already a subscriber? Register or Log In