Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Mind

Brain Voodoo Goes Electric

Neuroskeptic iconNeuroskepticBy NeuroskepticMay 4, 2013 1:41 AM

Newsletter

Sign up for our email newsletter for the latest science news

Four years ago, neuroscientists became aware of an ominous-sounding manuscript entitled "Voodoo Correlations In Social Neuroscience". This piece was eventually published under a more prosaic name but it still hit home, with nearly 500 citations so far. To me, this paper marked the start of a new era of 'critical' (in the proper sense of thoughtful discussion and reflection) neuroscience, with fMRI researchers becoming more aware that fundamental statistics are as important as ever, despite the amazing technical advances and novel techniques of the 1990s and 2000s.

EEG_voodoo.png

Now London neuroscientist James Kilner has reminded us that the 'voodoo problem' applies not only to fMRI but also to EEG and MEG, methods for measuring brain electro-magnetic activity: Bias in a common EEG and MEG statistical analysis and how to avoid it The problem, in essence, is about selecting values out of a random population. If you apply a selection criteria to lots of random variables, and pick out only the highest (or lowest) values, then any statistical tests you run on those picked values will probably be biased because they're selected. It sounds simple, but in a complex data analysis, it's surprising how easy it is to select and test without realizing it. In the case of EEG and MEG, the recorded data consists of anywhere from 20 to 250 sensors or electrodes placed around the head. It's not clear however which sensors are most 'interesting' in any given experiment. A common practice is to focus on the electrode at which the largest electrical or magnetic response (ERP) is seen to a given stimulus, but Kilner shows that this is dangerous unless care is taken to make the selection criteria independent of the subsequent analysis. Selection itself is fine, but 'double dipping' or 'circular' testing of the same things that were used as selection criteria (e.g. testing the size of the ERP at the electrode where that ERP is largest) is problematic.

rb2_large_white.png

Kilner, J. (2013). Bias in a common EEG and MEG statistical analysis and how to avoid it Clinical Neurophysiology DOI: 10.1016/j.clinph.2013.03.024

    2 Free Articles Left

    Want it all? Get unlimited access when you subscribe.

    Subscribe

    Already a subscriber? Register or Log In

    Want unlimited access?

    Subscribe today and save 70%

    Subscribe

    Already a subscriber? Register or Log In