Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

A Kilogram Just Ain't What It Used To Be

The archetypal kilogram is losing mass, and no one knows why.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

Physicists are getting worked up about something that should have been settled long ago: Just how massive is a kilo­gram? Most units of scientific measure are now defined not by physical objects but by universal constants. A meter, for example, is the distance traveled by light in a vacuum in 1/299,792,458 of a second. The kilogram is a holdout, still defined by a cylinder of platinum-iridium kept in a vault near Paris since 1889. And the cylinder is losing weight—a grain of salt’s worth so far—demonstrating the need for a unit based on a physical constant.

Two major standardization strategies have surfaced. One proposes a numerical unit built on Avogadro’s number, derived from the number of atoms in 12 grams of carbon-12. The other approach makes use of Planck’s constant and the Watt balance, which measures the electromagnetic force needed to hold a kilogram.

For Richard Davis at the official ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles